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Abstract—Accelerators designed for deep neural net-
work (DNN) inference with extremely low operand widths,
down to 1-bit, have become popular due to their ability to
significantly reduce energy consumption during inference. This
paper introduces a compiler-programmable flexible System-on-
Chip (SoC) with mixed-precision support. This SoC is based on a
Transport-Triggered Architecture (TTA) that facilitates efficient
implementation of DNN workloads. By shifting the complexity
of data movement from the hardware scheduler to the exposed-
datapath compiler, DNN workloads can be implemented in an en-
ergy efficient yet flexible way. The architecture is fully supported
by a compiler and can be programmed using C/C++/OpenCL.
The SoC is implemented using 22nm FDX technology and
achieves a peak energy efficiency of 28.6/14.9/2.47 TOPS/W for
binary, ternary, and 8-bit precision, respectively, while delivering
a throughput of 614/307/77 GOPS. Compared to state-of-the-
art (SotA), this work achieves up to 3.3x better energy efficiency
compared to other programmable solutions.

I. INTRODUCTION

Edge computing is a rising computing paradigm with the
ability to overcome privacy, latency, and energy issues that
are currently being faced in the deployment of neural net-
works (NNs) on embedded devices. While modern neural net-
works can solve complex tasks in fields such as Computer Vi-
sion (CV) and Natural Language Processing (NLP), the sheer
size of these networks prevents them from being deployed
directly on embedded devices, which typically have limited
storage capacity. Moreover, the compute power also interferes
with the deployment of such networks due to the energy
constraints typically imposed on embedded hardware. To over-
come these challenges, several approaches have been explored
that optimize models for low-power hardware. These include
Hardware-aware Neural Architecture Search (NAS) [1], model
compression in the form of pruning [2], quantization [3] and
exploiting efficient data reuse [4].

In parallel, research has been performed on creating highly
specialized accelerators for neural network inference, exploit-
ing the aforementioned model compression techniques. While
these architectures perform great in terms of energy efficiency,
the datapath structure is often not flexible and programmability
is limited to some assembly dialect if programmable at all.
Contrary, programmable solutions for neural network infer-
ence have been proposed; although the flexibility is better,
the overhead cost due to data movement degrades the energy
efficiency of these solutions.
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Fig. 1: Energy efficiency vs. area efficiency of programmable
and fixed-function works.

In summary, current efforts towards low-power accelerators
suffer from limited flexibility to easily and efficiently support
different layers with varying sizes and varying parameter
precision, or incur a large overhead to retain programmabil-
ity. In this paper, we present BrainTTA, the first high-level
programmable neural network SoC that features an exposed-
datapath architecture [5] with mixed-precision support. We
showcase the flexibility of this architecture and the energy
trade-off when running layers with different bit-widths. The
contributions of this paper are threefold:

• BrainTTA: an energy-efficient SoC for neural network
inference. BrainTTA supports multiple precisions (binary,
ternary and 8-bit) and utilizes its transport-triggered
architecture [5] to reduce data movement. BrainTTA
achieves an energy efficiency of 28.6/14.9/2.47 TOPS/W
for binary, ternary, and 8-bit operands, respectively. (Sec-
tion III & IV).

• Energy consumption analysis: a thorough analysis of
the system’s energy consumption for various operand
bit-widths. We demonstrate that leveraging the TTA ap-
proach enables energy-efficient scaling to low-precision
operands (Section V).



• Comparison to State-of-the-Art: We compare
BrainTTA to state-of-the-art programmable architectures
that focus on optimizing neural network inference for
quantized neural networks. BrainTTA demonstrates up
to 3.3x improvement in energy efficiency compared to
other programmable solutions. Fig. 1 summarizes
how BrainTTA compares to SotA for different
operand precisions in area and energy efficiency
(see also Section VI & VII).

The remainder of this paper is organized as follows. Section II
discusses the background knowledge. Afterwards, Section III
provides an overview of the full system architecture. The
mapping of the network onto the proposed architecture is
described in Section IV. The results are presented in Section V,
followed by a comparison with respect to state-of-the-art
architectures in Section VI and VII. Finally, Section VIII
concludes the paper.

II. BACKGROUND INFORMATION

To relieve the burden on the memory and reduce the
arithmetic hardware complexity, quantization can be applied.
Quantization can be applied down to 8-bit without significant
loss of accuracy [6]. However, even with 8-bit quantization, the
storage requirements of modern neural networks are not in line
with the storage size typically found in embedded hardware.
Therefore, a push towards even lower bit-width quantization
was made.

A. Binary and Ternary Quantization

Binary quantization restricts the weights and activations
to a single bit; therefore the weights and activations are
w, a ∈ {−1,+1} whereas ternary trits can additionally
represent zero. This low operand precision introduces several
advantages: the memory footprint is drastically reduced, the
computations can be simplified, and the required bandwidth
decreases sharply [7][8]. When both weights and activations
are binarized or ternarized, the computations can be simpli-
fied by replacing the MAC (Multiply-Accumulate) operation
with XNOR and popcount for binary and Gated-XNOR
and popcount operations for ternary omitting the need for
expensive multiplication operations.

While these extreme forms of quantization introduce signif-
icant energy and area savings, there is no such thing as a free
lunch. There can be a significant gap in accuracy between
8-bit quantized networks and binary/ternary variants [3][9].
Furthermore, some layers are more resilient to quantization
than others [10]. This varying quantization penalty motivates
the use of an architecture that supports mixed-precision.

B. Transport-Triggered Architecture

Transport-Triggered Architecture (TTA) [5] is a kind of
VLIW processor, however, it is programmed by specifying
data movements instead of arithmetic operations. This means
that the movement of data is exposed to the compiler; the
TTA is an explicit-datapath architecture, this enables new
optimizations. DNN workloads are heavily data-centric. The

DMEM IMEM

RF.out → ALU.in1t.add nop LSU.out → CU.in2
Example TTA instruction

Bus 0
Bus 1
Bus 2

LSU ALU RF CU

Fig. 2: An example TTA instance and instruction, the square
blocks denote input- and output-ports. A cross denotes a
trigger-port. The colored arrows drawn on the architecture
illustrate the moves inside the example instruction. This TTA
is a 3-issue processor, i.e., it handles 3 moves per cycle.
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Fig. 3: TCE toolfow that is used to create the BrainTTA
instantiation and compile the workload from a high-level
language (HLL).

cost of retrieving data increases with every level in the
hierarchy (RF → SRAM → DRAM) and should be avoided
whenever possible. With the data path exposed to the compiler,
optimization like Register File (RF) bypassing and dead result
elimination can be applied such that the pressure on the RF
is decreased allowing buffering of more DNN feature maps
and weights or decreasing the area occupied by the RF. The
explicit-datapath architecture essentially moves complexity
from the hardware domain (scheduler) to the software domain
(compiler) while retaining full flexibility. The downside is that
the compiler complexity is increased, but this is circumvented
by reusing existing frameworks, as discussed in Section III.

A basic exemplary instance of a TTA is displayed in Fig. 2.
The TTA contains a Control Unit (CU) used for instruction
fetching and decoding, RFs for temporary storage, and Load-
Store Units (LSUs) to access the memories. The connectivity
(represented by gray circles) is design-time configurable and
can be tailored to be generic or application-specific as desired;
more connectivity is at the expense of larger instruction size
and more switching activity in the interconnect. In [11], several
ways to mitigate the cost of increased connectivity by reducing
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Fig. 4: Overview of the BrainTTA SoC. The acronyms PMEM, DMEM, and IMEM stand for Parameter Memory, Data Memory,
and Instruction Memory, respectively.

the instruction overhead, such as instruction compression are
presented.

III. ARCHITECTURAL OVERVIEW

The proposed full system architecture is displayed in Fig. 4
and the TTA core in Fig. 5. In this paper, the TTA-based
Co-design Environment (TCE) [12] is used to create the TTA
instance.

This is an open-source toolchain that provides full compiler
support. An overview of the main components of the TCE
framework is shown in Fig. 3. It allows creation of any
Functional Unit (FU) with arbitrary functionality and number
of input and output ports using the processor design tool. The
FUs can implement custom instructions that can be added
into the TCE compiler; the instructions can be inferred by
the compiler or directly called using intrinsics. The compiled
program can then be simulated using the ISA simulator which
can provide useful statistics to optimize the function units and
their connectivity. Finally, to deploy the TTA design, HDL
code can be generated together with the binary images to be
loaded into the TTA memory.

The main system components (as shown in Fig. 4) are:
• RISC-V host processor [13], to start/stop the execution

on the TTA core, initialize the memories and send and
receive information via the external interfaces.

• TTA core, used to perform the mixed-precision inference,
more details will follow in the next paragraph.

• SRAM, with separate memories for the RISC and TTA
core. Memories are banked to allow efficient access of
smaller bit-widths.

• Debugger (DBG), can halt the execution on the TTA core
and signal the completion of a task to the RISC-V host.

• AXI interconnect, used for on-chip communication be-
tween the RISC and TTA-core and interfaces with the
peripherals (APB) for off-chip communication.

At the heart of the SoC is the TTA core. This core is used for
neural network inference and is based on a TTA as explained

in Section II-B. The instantiation of the TTA core used in this
paper is shown in Fig. 5. It contains different FUs. They are
interconnected via buses, with scalar buses (buses 0-5) and
vector buses (buses 6-11). The core consists of the following
main units:

Control Unit (CU); it contains the logic to fetch and decode
instructions and steers the other units to execute the correct
operations. Furthermore, the CU contains a hardware loop-
buffer. Since the network layers are essentially described by
multiple nested loops (listing 1), having a hardware loopbuffer
can greatly cut-down instruction fetch costs.

Vector Multiply-Accumulate (vMAC/vTMAC/vBMAC)
unit is the workhorse of our BrainTTA. MAC operations are
performed for 8-bit, ternary, and binary operands. The unit
multiplies two 1024-bit vectors with 32 entries of 32-bits each.
Thus the vMAC contains 32 reduction trees each 32-bit wide,
where each tree has four 8-bit, 16 ternary, or 32 binary inputs.

The number of inputs to the adder tree grows for smaller
bit widths, this is needed to amortize the accumulator cost
with respect to the multiplier cost; since the multiplication
operation is cheaper for smaller bit-widths, the adder tree
needs to become wider [14]. To reduce switching activity, the
inputs of the unused MAC units are gated to save power. Input
data reuse is exploited by broadcasting the input feature map
to multiple units with different weights. The fixed vector width
implies that for each bit-width, different vectorization factors
are applied; this is further explained in Section IV-B.

Vector Add (vADD) is used to add two (either 512-
or 1024-bit) vectors, this can be used to support residual
layers. The vector width that is supported corresponds to
the output bit-widths of the MAC operation as shown in
Section IV-A. For instance, when performing a MAC operation
on a convolutional layer using 8-bit operands, the output of the
MAC unit will have 32 entries of 32-bit each, thus resulting
in a 1024-bit wide vector.

Vector Operations (vOPS) performs the non-arithmetic
operations. This FU can additionally perform quantization,
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Fig. 5: BrainTTA core; thicker lines denote 1024-bit vector buses, thinner lines 32-bit scalar buses.

apply activation functions, e.g. ReLU, and pooling functions
such as max pooling. This FU also supports scalar element
insertion and extraction on vectors.

(Vector) Register Files (vRFs/RFs) to store intermediate
values or buffer weights to increase data reuse.

Load-Store Units (LSUs) are the interface to the SRAM.
There are two LSUs, one mainly used to load weights (from
PMEM) and the other to load and store feature maps (DMEM).

Scalar Units are primarily used for address calculations
that are needed as input to the LSUs, and for scalar code.

f o r h i n [ 0 , H − R + 1 ] : Output feature map height
f o r w i n [ 0 , W − S + 1 ] : Output feature map width

f o r tm i n [ 0 , M/ 3 2 ] : Ouput channels (vM = 32)
acc = b i a s [ tm ]
f o r t c i n [ 0 , C / 4 ] : Input channels (vC = 4)

f o r r i n [ 0 , R ] : Kernel height
f o r s i n [ 0 , S ] : Kernel width

acc += i n b u f f e r [ h + r ] [w + s ] [ c ] *
w e i g h t s [ n ] [ r ] [ s ] [ tm ]

o u t b u f f e r [ h ] [w] [ tm ] = acc

Listing 1: An example of a convolutional layer with an output-
stationary schedule, where vC and vM are the vectorization
factors used for the input- and output-channels.

IV. APPLICATION MAPPING

The different layers in a neural network can generally be
described in terms of nested for-loops, see listing 1 for an
example. Since applications for the TTA can be programmed
in e.g. C, the schedule can easily be altered for each layer
separately. Changing the schedule simply boils down to apply-
ing loop transformations (e.g. unroll, interchange, tile). This
scheduling freedom, in combination with the exposed-datapath
operating principle, allows the creation of an efficient schedule
on a per-layer basis with minimized data movements.

A. Layer Support

Different neural networks constitute different layer types.
Among the layer types that are supported in BrainTTA are:

1) Convolutional layer (8b in, 32b out)
2) Binary convolutional layer (1b in, 16b out)
3) Ternary convolutional layer (2b in, 16b out)

4) Depth-wise convolutional layer (8b in, 32b out)
5) Fully-connected layer (8b in, 32b out)
6) Residual addition (16/32b in, 16/32b out)
7) Requantization (to 8b, 2b or 1b)

An energy breakdown of the first three layers in the list above
is given in Section V.

Below some details about this layer support:
Convolutional layers are supported with three different bit-

widths: 8-bit, ternary and binary. Depending on the bit-width
of the convolutional layer, the 1024-bit weight and input vector
are split in different ways (more information in Section IV-B).
Since different output feature maps use the same input feature
maps, input broadcasting is possible for data reuse.

Depth-wise convolutional layers are supported by chang-
ing the scalar-vector product used in convolutional layers to
vector-vector products which is required since each weight
kernel is bound to a single input channel; in other words,
input broadcasting is not possible.

Fully-connected layers execution is similar to that of
convolutional layers, however, the kernel size is now 1x1.

Residual addition is adding two higher bit-width values,
but to support this, the scaling factor of the values added
together needs to match. The latter is called requantization.

To reduce the overhead that comes with the flexibility and
programmability of BrainTTA, parallelism is introduced in
several scheduling dimensions (i.e. dimensions that are shown
in listing 1); in the next paragraph, the choice of vectorization
dimensions to achieve this parallelism will be elaborated.

B. Vectorization

Vectorization is visualized in Fig. 6. The choice of vec-
torization dimensions is based on three observations. First,
modern networks typically have more feature maps (higher C,
M) but the size of each individual feature map is smaller (lower
W, H) [15][16]. This means that to populate a large vector,
one should not restrict vectorization to W and H. Secondly,
the MAC, binary and ternary popcount operations produce
an intermediate output value with a much higher bit-width
than the quantized value; requantization should happen as
soon as possible to reduce movement of large intermediate
values. Therefore, the final value of a single pixel in the



Fig. 6: A convolutional layer where the Input Feature
Map (IFM), Kernel and Output Feature Map (OFM) vector-
ization is visualized; vC is vectorization over the IFM channel
dimension, vM over the OFM channel dimension.

output feature map should be calculated as early as possible,
which makes an output-stationary schedule favorable. Lastly,
the popcount outputs the sum of its inputs. Therefore, the
inputs supplied to the popcount module should contribute to
the same output pixel. This means that the inputs supplied to a
single popcount module (which corresponds to a single 32-bit
vector element), should either have different W&H indices in
the same receptive field or from a different input channel C.

V. EXPERIMENTAL SETUP AND RESULTS

The design shown in Fig. 4a is synthesized using Global-
Foundries 22nm FDX technology using an operating voltage
of 0.5V while targeting the typical corner. After synthesis, the
layout is created, as shown in Fig. 4b.

A. Experimental setup

The flow that is used to go from RTL to layout consists
of Cadence Genus 21.10 for the logic synthesis and Cadence
Innovus 21.11 for the back-end implementation. These tools
are also used to obtain energy numbers. The energy numbers
are obtained by annotating the switching activity found during
the post-layout simulation in order to gain the most accurate
energy figures possible.

B. Post-layout simulation results

The area of the SoC is 2.98mm2 excluding IO pads as can
be seen in Fig. 4b. The largest part of the floorplan is dedicated
to the data (DMEM) and parameter (PMEM) memory of the
TTA core, holding the input/output feature map and weights
respectively; the breakdown of the on-chip area between the
logic and memories is depicted in Fig. 7a. Both DMEM and
PMEM are made by combining 32 16kB banks, resulting in
a combined data storage capacity of 1MB. A breakdown of
the area usage in the TTA core is shown in Fig. 7b, a large
part of the area is used for instructions (loopbuffer) and for
weight and activation storage (RF). Being memory dominated
in both the overall area (> 80%), as well as the TTA core
(> 45%), implies that BrainTTA has a disadvantage on the
area efficiency metric. However, it therefore also has the ability
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(b) TTA core area breakdown.

Fig. 7: BrainTTA area breakdown.

to reuse more data at lower memory levels, thereby potentially
increasing its energy efficiency. Note that the area efficiency
of BrainTTA still beats the competition, see Fig. 1.

Fig. 8 shows the energy required to perform three con-
volution layers, with binary, ternary, and 8-bit operands. A
MAC is counted as two operations. It can be seen that the
energy per operation difference between the binary and ternary
convolution is nearly a factor of 2. Furthermore, the break-
downs for the binary and ternary layers are very similar with
the exception of the instruction memory and the parameter
memory.

The reason for this similarity is that the compute unit
(vMAC) circuitry and usage of the binary and ternary con-
volution are very alike, and their utilization of the other
components is identical but the amount of computations per
second is halved since the ternary digits (trits) take up twice
the space of single binary digits, hence the doubled energy
per operation. The difference in energy consumption of the
parameter memory is simply due to the lower toggle count
on the data lines in the binary benchmark compared to the
ternary and 8-bit benchmark (i.e. the learned neural network
weights have more consecutive logic 0s and 1s for the chosen
temporal schedule for the binary benchmark).

The breakdown of the 8-bit convolution shows that a larger
percentage of the energy is spent in the vMAC unit because
the arithmetic operations cannot be simplified like the binary
and ternary variants; the energy per operation grows faster
than the bit-width. The energy used by the vMAC unit scales
superlinearly with the bit-width whereas the other components
only scale linearly; therefore, to achieve high energy efficiency
for low bit-width operands, the energy consumption of the
linearly scaling components should be minimized. This can
be achieved by, for example, maximizing data reuse, and
minimizing instruction overhead.

Furthermore, the interconnect (IC) of the TTA core takes
second place in energy usage in the logic after the vMAC.
This is one of the architectural characteristic components
where a price is paid for flexibility. The routing flexibility
in BrainTTA in combination with its freedom to implement
any FU (and retain compiler support) makes it possible to
run more complex networks like ResNet and even non-DNN
workloads independently of the general-purpose processor.



8.
53

%

5.69%8.07%

5.68%

5.74%

3.29%

17.3%
20.6%

5.79%

16.5%

15.1%

3.17%7.04%5.05%
5.61%

3.75%

16.5%

20.2%

5.94%

14.7%

10
.1

%

4.32%

3.16%3.7%

13.2%

14.1%

3.
9%

42.4%

PMEM IMEM DMEM Loopbuffer DMEM LSU PMEM LSU IC vRF TTA other RISC vMAC

Binary Convolution
 E = 35 fJ/op

Ternary Convolution 
 E = 67 fJ/op 

8-bit Convolution
 E = 405 fJ/op 
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VI. RELATED WORK

Recently, several architectures have been proposed to ac-
celerate neural network inference under stringent power con-
straints. These architectures can be categorized into two
groups: programmable solutions and fixed-function accelera-
tors. Programmable solutions provide flexibility in the tempo-
ral execution schedule of a neural network layer, allowing for
adaptation to different layer types and dimensions while main-
taining energy efficiency. On the other hand, fixed-function
accelerators spatially map (complete) layers, limiting the tem-
poral scheduling freedom. While fixed-function accelerators
offer excellent energy efficiency, their support for layer types
and dimensions is fixed during design, which significantly
hampers the execution efficiency of different layer types and
layers with different dimensions than supported by their spatial
design.

A. Programmable solutions

We categorize programmable solutions into three types:
compiler-programmable, assembly dialect, and run-time con-
figurable network-on-chip (NoC).

Compiler-programmable solutions includes architectures
such as XPULPNN [17] and Dustin [18]. These architectures
are based on extensions of a RISC-V processor architecture.
Dustin, for instance, combines a RISC-V host processor with
a 16-core cluster consisting of RISC-V-based processing units
optimized for operands of different precisions. The 16-core
cluster can be configured to run in SIMD mode.

Assembly dialect supported architectures include XNOR-
Neural Engine (XNE) [19] and SamurAI ([20]). XNE features
a binary neural network accelerator that supports the previ-
ously described reduced arithmetic complexity introduced by
binary quantization. XNE’s SoC [19] allows running neural
networks with the help of a configurable microcontroller
unit (MCU) that is programmable using an assembly dialect.
Similar to XNE, SamurAI ([20]) is an SoC consisting of a

DNN accelerator in combination with a RISC-V processor.
The accelerator features 64 8-bit processing elements spread
over two clusters in groups of four.

Configurable NoC architectures include the EyeRiss
v2 [21] accelerator. EyeRiss v2 introduces a configurable NoC
that is able to adapt to the various dimensions of DNN layers.
The hierarchical mesh network can be configured for unicast
mode (low spatial reuse), broadcast mode (high spatial reuse),
or a combination of both.

B. Fixed-function accelerators

Next to the programmable solutions, research has been done
on fixed-function accelerators. Compared to programmable
solutions, fixed-function accelerators are less flexible, as many
of the neural network dimension parameters are hard-wired
into the SoC design.

ChewBaccaNN [22] is an accelerator that supports binary
operands. The kernel-size is hard-wired and data reuse is ex-
ploited by utilizing shift-registers. In [23] a ternary accelerator
called CUTIE is presented. By spatially unrolling a complete
4D kernel (R, S, C and M dimensions, see Listing 1), it
achieves significant data reuse if the loop iterators align with
the hardware design. However, spatial unrolling this much di-
rectly constrains the network layer sizes that can be efficiently
processed, thereby sacrificing flexibility. Another binary accel-
erator, [14], is implemented based on the computation-near-
memory principle in 10nm FinFet technology. All kernel sizes
are hard-wired, resulting in little to no flexibility.

In [24], the concept of having scheduling flexibility in
neural network inference is explored. The need for scheduling
flexibility is motivated by the change in layer parameters from
the first layers into deeper layers. Two different schedules
are implemented in hardware, both relying on feature map
parallelism. One for the shallow layers (W,H > C) and one
for the deeper layers (C > W,H). Although the addition of
scheduling flexibility improves throughput, power numbers for



ASIC implementation are not provided, and thus, this paper
is not considered in our actual comparison.

VII. COMPARISON TO STATE-OF-THE-ART

We compare BrainTTA not only to similar programmable
architectures, but also to fixed-function accelerators. This com-
parison helps us identify the energy and area efficiency gap
between these two categories. Table I presents a detailed com-
parison of BrainTTA with state-of-the-art programmable archi-
tectures. Fig. 1 provides an overall comparison of BrainTTA
to both programmable and fixed-function architectures, show-
casing energy and area efficiency.

From Fig. 1, we observe that BrainTTA achieves the best
area and energy efficiency among all programmable works for
all bit-widths supported. Although BrainTTA’s area efficiency
is negatively affected by its larger memory capacity compared
to other works, it still maintains a lead in area efficiency. There
is, however, still (at most) an order-of-magnitude gap between
the fixed-function accelerators and the programmable solutions
in both area and energy efficiency. However, performance of a
fixed-function accelerator may reduce dramatically if a DNN
layer does not match the design point (i.e. spatial unrolling)
of the processing hardware, or can even not be executed at all.

When compared to the configurable NoC EyeRiss v2,
BrainTTA demonstrates a 10x higher energy efficiency, and
a 4.7x higher area efficiency. EyeRiss v2 prioritizes parallel
MACs over memory in terms of area allocation, and therefore
has a 2x higher throughput. BrainTTA can easily be scaled for
higher throughput, e.g. by adding more vMAC units; TTAs are
extremely scalable in this respect [5].

Furthermore, when compared to assembly dialect architec-
tures like XNE and SamurAI, BrainTTA outperforms them in
terms of energy and area efficiency. BrainTTA achieves 3.3x
better energy efficiency than XNE for binary operands and
1.9x better energy efficiency than SamurAI for 8-bit operands.
In both cases this is due to better data reuse in BrainTTA, using
a combination of broadcasting in the vMAC units together with
parameter buffering in the vector register files.

Finally, when compared to compiler-programmable works
like XPULPNN and Dustin, we observe BrainTTA has a
slight advantage on 8-bit operands. It is important to note
that for a fair comparison, the results of Dustin as displayed
in Table I should be technology-scaled (65nm vs. 22nm); in
this comparison we assume linear scaling with a factor 3.
After accounting for technology scaling, BrainTTA achieves
a modest increase in energy efficiency of 14% and 39%
over XPULPNN and Dustin respectively for 8-bit operands,
primarily due to the lower operating voltage.

However, the key advantage of BrainTTA lies in its supe-
rior scaling to low bit-width operands. When decreasing the
operand width from eight to two bits, XPULPNN and Dustin
increase their energy efficiency by a factor 2.7 and 3.8. In
other words, their energy efficiency scales sub-linear. Whereas
in BrainTTA, the energy efficiency scales with a factor 11.4x
and 5.96x when decreasing the operand width by a factor 8 and
5 respectively (ternary operand is considered as 1.6 bits [23]);

i.e. operand scaling in BrainTTA yields a superlinear energy
efficiency increase. This significant improvement in scaling
can be attributed to the optimized balance between compute,
data movement, and overhead energy in BrainTTA (compute
energy scales quadratic, while the others scale linear with bit-
width). The programmable exposed-datapath TTA architecture
of BrainTTA allows for minimal data movement by 1) utilizing
explicit register file bypassing and 2) the ability to use various
temporal execution schedules. These features are paramount to
achieve high energy efficiency for inference with low-precision
operands. The overhead in Dustin and XPulpNN apparently
limits their ability to efficiently support small bit-widths as
it offsets the super-linearly decreasing compute cost for the
smaller bit-width operands. Note that although Fig. 1 does not
accommodate for differences in technology size or voltage, the
advantage of improved scaling with the bit-width still holds.

Overall, BrainTTA showcases superior energy and area
efficiency compared to state-of-the-art programmable architec-
tures, highlighting the effectiveness of the TTA architecture in
optimizing energy consumption and performance for various
operand widths.

VIII. CONCLUSION

A novel TTA-based SoC for neural network inference that
seamlessly combines flexibility with efficiency is presented.
This SoC is able to perform operations at 28.6/14.9/2.47 TOP-
S/W for binary, ternary and 8-bit operands, respectively. Still,
it is highly flexible and can easily adapt to different types of
networks such that it can advance together with the algorithmic
inventions in the area of heavily quantized neural networks.
The support for mixed-precision allows BrainTTA to mitigate
accuracy loss in layers that are most adversely affected by low
bit-width quantization (typically the first and last layer of the
network). The programmable exposed-datapath architecture
allows for temporal scheduling freedom in combination with
explicit register file bypassing thus enabling BrainTTA to
achieve superior scaling in terms of energy efficiency to low
bit-width operands.

The mixed-precision and compiler support, in combination
with the exposed-datapath, enable efficient execution of DNN
layers with low bit-width operands making this architecture
very versatile while beating the energy efficiency of other
programmable architectures.

A. Future work

We see various options for future improvements such as:
Ternary data compression. In the current architecture one

ternary symbol is stored in a 2-bits format, whereas we could
store five ternary symbols in 8-bits to effectively store one
symbol in 1.6-bits. This comes at the cost of compression and
decompression logic.

Multiple vMAC units. The area efficiency of the current
architecture could easily be raised by including more vMAC
units in the design, since the current architecture is dominated
by memory. Additionally, energy can than be saved using
direct FU-to-FU communication by bypassing the RF.



TABLE I: Comparison between BrainTTA and state-of-the-art programmable architectures as discussed in Section VI, a MAC
operation is counted as two operations. The energy efficiency is obtained under the same operating conditions as in Fig. 8.

EyeRiss v2 [21] XNE [19] SamurAI [20] XPULPNN [17] Dustin [18] This Work
Technology node 65nm 22nm 28nm 22nm 65nm 22nm
Programmability Configurable ASM1 ASM Compiler Compiler Compiler
Supply voltage [V] - 0.6 0.45 0.6 0.8 0.5
Inference precision 8 1 8,16,32 2,4,8,16,32 2,4,8,16,32 1,T2,8

Energy efficiency
252 GOPS/W (8b)3

8.7 TOPS/W (1b)

1.3 TOPS/W (8b) 2.2 TOPS/W (8b)
6.1 TOPS/W (2b)

606 GOPS/W (8b)
2304 GOPS/W (2b)

2.5 TOPS/W (8b)
14.9 TOPS/W (T)

28.6 TOPS/W (1b)

Throughput4
154 GOPS (8b)5

67 GOPS (1b)

2.8 GOPS (8b) 22.8 GOPS (8b)
74.2 GOPS (2b)

8.8 GOPS (8b)
34.6 GOPS (2b)

77 GOPS (8b)
307 GOPS (T)

614 GOPS (1b)
Memory capacity [kB] 246 520 464 640 80 1024
Core area [mm2] 28.16 2.32 4.5 1.05 10 2.98

Area eff. [GOPS/mm2]
5.5 (8b)

28.9 (1b)

0.6 (8b) 21.7 (8b)
70.7 (2b)

0.9 (8b)
3.46 (2b)

25.8 (8b)
103.0 (T)

206.0 (1b)
1 ASM = Assembly dialect.
2 T = ternary.
3 Average on AlexNet.
4 Throughput at most energy efficient operating point unless specified otherwise.
5 Peak throughput, not throughput at most efficient operating point.
6 Area is estimated by scaling the area of EyeRiss v1 (12.25mm2, 1176k NAND2-gates) by the gate-count difference with EyeRiss v2 (2695K NAND2-gates).

Automated scheduling exploration. We could intertwine
the compiler with a hardware-aware scheduling tool such as
ZigZag [25] to come up with better temporal schedules.

ACKNOWLEDGEMENT
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[12] P. Jääskeläinen, T. Viitanen, J. Takala, and H. Berg, “HW/SW Co-
design Toolset for Customization of Exposed Datapath Processors,” in
Computing Platforms for Software-Defined Radio. Springer, 2016, pp.
147–164.

[13] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., pp. 2700–2713, 2017.

[14] P. C. Knag et al., “A 617-TOPS/W All-Digital Binary Neural Network
Accelerator in 10-nm FinFET CMOS,” IEEE J. Solid-State Circuits
(JSSC), 2021.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR), 2016, pp. 770–778.

[16] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning,”
in Proc. AAAI Conf. Artificial Intelligence, 2017, p. 4278–4284.

[17] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini,
“XpulpNN: Accelerating Quantized Neural Networks on RISC-V Pro-
cessors Through ISA Extensions,” in Proc. Des. Autom. Test Eur.
(DATE), 2020, pp. 186–191.

[18] G. Ottavi et al., “Dustin: A 16-Cores Parallel Ultra-Low-Power Cluster
With 2b-to-32b Fully Flexible Bit-Precision and Vector Lockstep Exe-
cution Mode,” IEEE Trans. Circuits Syst. I (TCAS-I), pp. 1–14, 2023.

[19] F. Conti, P. D. Schiavone, and L. Benini, “XNOR Neural Engine:
A Hardware Accelerator IP for 21.6-fJ/op Binary Neural Network
Inference,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.
(TCAD), pp. 2940–2951, 2018.

[20] I. Miro-Panades et al., “SamurAI: A 1.7MOPS-36GOPS Adaptive
Versatile IoT Node with 15,000× Peak-to-Idle Power Reduction, 207ns
Wake-Up Time and 1.3TOPS/W ML Efficiency,” in Proc. IEEE Symp.
VLSI Circuits Dig. Tech. Pap., 2020, pp. 1–2.

[21] Y. H. Chen, T. J. Yang, J. S. Emer, and V. Sze, “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices,”
IEEE J. Emerg. Sel. Top. Circuits Syst. (JETCAS), pp. 292–308, 2019.

[22] R. Andri, G. Karunaratne, L. Cavigelli, and L. Benini, “ChewBaccaNN:
A Flexible 223 TOPS/W BNN Accelerator,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), 2021, pp. 1–5.

[23] M. Scherer, G. Rutishauser, L. Cavigelli, and L. Benini, “CUTIE:
Beyond PetaOp/s/W Ternary DNN Inference Acceleration With Better-
Than-Binary Energy Efficiency,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst. (TCAD), pp. 1020–1033, 2022.

[24] J. Cho, Y. Jung, S. Lee, and Y. Jung, “Reconfigurable Binary Neural
Network Accelerator with Adaptive Parallelism Scheme,” Electronics
(Switzerland), pp. 1–13, 2021.

[25] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Verhelst, “ZigZag:
Enlarging Joint Architecture-Mapping Design Space Exploration for
DNN Accelerators,” IEEE Trans. Comput. (TC), pp. 1160–1174, 2021.


