BrainTTA: A 28.6 TOPS/W Compiler Programmable Transport Triggered NN SoC

IEEE INTERNATIONAL CONFERENCE ON COMPUTER DESIGN - 2023

Maarten J. Molendijk^{1,2}, Floran A.M. de Putter¹, Manil Dev Gomony¹, Pekka Jääskeläinen³, Henk Corporaal¹

¹Eindhoven University of Technology, the Netherlands ²NXP Semiconductors, the Netherlands ³Tampere University, Finland

NN Architecture and Hardware Development Cost

- Large variety of NN architectures
- Rapidly evolving

BrainTTA: A 28.6 TOPS/W Compiler Programmable Transport-Triggered NN SoC IEEE ICCD 2023

S. Hashemi et. al. "Understanding the impact of precision quantization on the accuracy and energy of neural networks," DATE 2017
<u>https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS fig1 340843129</u>

Source: [2]

2

NN Architecture and Hardware Development Cost

BrainTTA: A 28.6 TOPS/W Compiler Programmable Transport-Triggered NN SoC IEEE ICCD 2023

[1] S. Hashemi et. al. "Understanding the impact of precision quantization on the accuracy and energy of neural networks," DATE 2017 [2].https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS fig1 340843129

Operand Precision Scaling GPT-3 O 10^{11} Number of Model Parameters 10^{-10} 10^{-10} 10^{-10} GPT-2 Transformer-XL Transformer (Big) VGG16 0 ALBERT AlexNet NASNet BERT 0 ResNet-50 ransforme Inception V: (Base) (ception GoogLeNet 10^{6} DQN 0 10^{5}

2016

Year

2017

Deployment on edge devices \rightarrow Quantization

2018

2019

2020

Source: [3]

BrainTTA: A 28.6 TOPS/W Compiler Programmable Transport-Triggered NN SoC IEEE ICCD 2023

2013

2012

2014

Operand width \downarrow

2015

MAC HW superlinearly

Overhead (sub)linearly

4

- Deployment on edge devices \rightarrow Quantization
- Operand width ↓
 - MAC HW superlinearly
 - Overhead (sub)linearly
- Efficient data reuse + minimized data movement

5 [3] https://www.researchgate.net/figure/Number-of-parameters-ie-weights-in-recent-landmark-neural-networks1-2-31-43 fig1 349044689 [4] P. C. Knag et al., "A 617-TOPS/W All-Digital Binary Neural Network Accelerator in 10-nm FinFET CMOS." IEEE J. Solid-State Circuits (JSSC), 2021.

Transport-Triggered Architecture

RF.out \rightarrow **ALU.in1t.add**

nop

LSU.out \rightarrow **ALU.in2**

- + Compile-time configurable \rightarrow flexible schedule
- + Exposed datapath \rightarrow RF bypassing
- + Exposed datapath \rightarrow Operand sharing

BrainTTA: Toolchain and System

Design Flow

- OpenASIP, retargetable [1]
- LLVM-based compiler
- ISA simulator
- HDL Database \rightarrow custom units

BrainTTA: Toolchain and System

IRQ DBG DMEM LSU RISC-\ RISC-V IMEM - U-DMEM 16kB 32x16kB RISC-V PMEM LSU ARBITER 꾼 DMEM $725 \mu n$ TTA TTA **TTA CORE** TTA 16kB PMEM DMEM PMEM 32x16kB **AXI INTERCONNECT** GCU APB IMEM 4x32kB RISC TTA QSPI JTAG DM/ MEM IMEM $1730 \mu m$

Design Flow

- OpenASIP, retargetable [1]
- LLVM-based compiler
- ISA simulator
- HDL Database \rightarrow custom units

Architecture design:

- Tech: GF 22nm FDX
- RISC-V + peripherals
- DMEM/PMEM split + banked access
- IMEM + HW loopbuffer

vMAC

- 8-bit MAC
 - Scalar-Vector MAC
 - Vector-Vector MAC
- Binary MAC
- Ternary MAC

vMAC

- 8-bit MAC
 - Scalar-Vector MAC
 - Vector-Vector MAC
- Binary MAC
- Ternary MAC

vADD

- Vector-Vector addition
- Residual support

vMAC

- 8-bit MAC
 - Scalar-Vector MAC
 - Vector-Vector MAC
- Binary MAC
- Ternary MAC

vADD

- Vector-Vector addition
- Residual support

vOPS

- Requantization
- Binarization
- Ternarization
- MaxPool
- Auxiliary ops

Quantized NNs → OS schedule

```
for h in [0, H - R + 1]:Output feature map heightfor w in [0, W - S + 1]:Output feature map widthfor m in [0, M]:Output feature map widthfor m in [0, M]:Output feature map widthfor c in [0, C]:Input channelsfor c in [0, R]:Kernel heightfor s in [0, S]:Kernel widthaccu += in [h+r][w+s][c] * w[c][r][s][m]output [h][w][m] = act_function (accu)
```


for h in $[0, H - R + 1]$:	Output feature map height Output feature map width
for m in $[0, M/32]$:	<i>Ouput channels</i> $(v_M = 32)$
accu = bias[32*m]	
for c in [0, C/4]:	Input channels $(v_C = 4)$
for r in [0, R]:	Kernel height
for s in [0, S]:	Kernel width
for tm in [0, 31]]:
for tc in [0,	3]:
accu += i	n [h+r][w+s][4*c+tc]
* w[4	*c+tc][r][s][32*m+tm]
output[h][w][m] = act_f	function (accu)

ACCU cost >> MUL cost → wider reduction tree

$$v_C=4\ v_M=2$$

ACCU cost >> MUL cost → wider reduction tree IFM broadcast → multiple reduction trees

Post-layout Energy Consumption [GF 22nm FDX]

BrainTTA: A 28.6 TOPS/W Compiler Programmable Transport-Triggered NN SoC IEEE ICCD 2023

Operating conditions:TT corner,, T=25 °C, Vdd=0.5V Conv params:W=H=16, M=C=128, R=S=3 21

Post-layout Energy Consumption [GF 22nm FDX]

BrainTTA: A 28.6 TOPS/W Compiler Programmable Transport-Triggered NN SoC IEEE ICCD 2023

Operating conditions:TT corner,, T=25 °C, Vdd=0.5V Conv params:W=H=16, M=C=128, R=S=3 22

Comparison to SotA

	Eyeriss v2	XNE	SamurAl	XPULPNN	Dustin	This work
Tech	65nm	22nm	28nm	22nm	65nm	22nm
Progamm ability	Configurable	ASM	ASM	Compiler	Compiler	Compiler
Energy efficiency	252 GOPS/W(8b) ¹	8.7 TOPS/W (1b)	1.3 TOPS/W (8b)	2.2 TOPS/W (8b) 6.1 TOPS/W (2b)	606 GOPS/W (8b) 2304 GOPS/W (2b)	2.5 TOPS/W (8b) 14.9 TOPS/W (T) 28.6 TOPS/W (1b)
Memory Cap. [kB]	246	520	464	640	80	1024 ²
Area Eff. [GOPS/m m2]	5.5 (8b) ³	28.9 (1b)	0.6 (8b)	21.7 (8b) 70.7 (2b)	0.9 (8b) 3.46 (2b)	25.8 (8b) 103.0 (T) 206.0 (1b)

*after technology scaling

¹Average on AlexNet.

²Excluding instruction memory.

³Area estimated using gatecount diff. EyerissV1, EyerissV2.

Comparison to SotA

	Eyeriss v2	XNE	SamurAl	XPULPNN	+14% in	This work
Tech	65nm	22nm	28nm	22nm	65nm	22nm
Progamm ability	Configurable	ASM	ASM	Compiler	+39%*	Compiler
Energy efficiency	252 GOPS/W(8b) ¹	8.7 TOPS/W (1b)	1.3 TOPS/W (8b)	2.2 TOPS/W (8b) 6.1 TOPS/W (2b	606 GOPS/W (8b) 2304 GOPS/W (2b)	2.5 TOPS/W (8b) 14.9 TOPS/W (T) 28.6 TOPS/W (1b)
Memory Cap. [kB]	246	520	464	640	80	1024 ²
Area Eff. [GOPS/m m2]	5.5 (8b) ³	28.9 (1b)	0.6 (8b)	21.7 (8b) 70.7 (2b)	0.9 (8b) 3.46 (2b)	25.8 (8b) 103.0 (T) 206.0 (1b)

*after technology scaling

¹Average on AlexNet.

²Excluding instruction memory.

³Area estimated using gatecount diff. EyerissV1, EyerissV2.

Programmable vs. Fixed-Function Trade-off

- Programmable architectures
- Fixed-function
 - Spatial loop unrolling
- Fixed FM/weight bufferring

BrainTTA - Conclusion

- Efficient and flexible NN inference engine:
 - Mixed-precision
 - Compile-time reconfigurable
 - Eff: 2.47 / 14.9 / 28.6 [TOPS/W]
 - Throughput: 77 / 307 / 614 [GOPS]
- Superlinear energy eff. scaling
 - 8-bit \rightarrow ternary: x5.96
 - 8-bit \rightarrow binary: x11.4

